Implementing Singly Linked List in C++ Using struct

Example 1: Declarations to create a node and playing with pointers.

#include <iostream>
using namespace std;

struct Node

{

int data;
Node *next;

}s

int main()

{
Node *head=NULL;
Node *t;
Node *n;

n = new Node;
n->data = 10;
n->next = NULL;

head=n;
t=n;

n = new Node;
n->data = 20;
n->next = NULL;

cout<<head->data<<endl;
cout<<head<<endl;
cout<<t->data<<endl,

cout<<t<<endl;

cout<<n->data<<endl;
cout<<n<<endl,

head->next=n;
cout<<n<<endl,

t=t->next;
cout<<t<<endl;






Example 2: Adding or Appending a Node to the List
#include <iostream>
using namespace std;
//Declaration to create a node
struct Node
{
int data;
Node *next;
2
// define the head pointer and make it points to null

Node *head = NULL;

// Adding or Appending a Node to the List
void appendNode(int value)
{
Node *n, *curr;
// Allocate a new node & store data
n = new Node();
n->data = value;
n->next = NULL;
// If there are no nodes in the list
// make n the first node
if (head==NULL)

head =n;



}

else // Otherwise, insert newNode at end
{

// Initialize curr to head of list

curr = head;

// Find the last node in the list

while (curr->next!= NULL)

{

curr = curr->next;

// Insert newNode as the last node

curr->next = n;

int main()

{

appendNode(2);
appendNode(14);
appendNode(26);

return O;



Example 3: Adding Nodes to the List and then printing them from the beginning
until the end.

#include <iostream>
using namespace std;
//Declaration to create a node
struct Node
{
int data;
Node *next;
I

// define the head pointer and make it points to null
Node *head = NULL;
// Adding or Appending a Node to the List
void appendNode(int value)
{

Node *n, *curr;

// Allocate a new node & store data

n = new Node();

n->data = value;

n->next = NULL;

// If there are no nodes in the list

// make n the first node

if (head==NULL)

head =n;



else // Otherwise, insert newNode at end
{

// Initialize curr to head of list

curr = head;

// Find the last node in the list

while (curr->next!= NULL)

{

curr = curr->next;

// Insert newNode as the last node

curr->next = n;

// displaying the list from the beginning
void displayList(void)
{

Node *curr;

curr = head;

while (curr!=NULL)

{
cout << curr->data << endl;

curr = curr->next;



// main function

int main()

{
appendNode(2);
appendNode(14);
appendNode(26);
displayList();

return O;



Example 4: Insertion at the end of the list.
#include <iostream>
using namespace std;
//Declaration to create a node
struct Node
{
int data;
Node *next;
I
// define the head pointer and make it points to null
Node *head = NULL;
// Adding or Appending a Node to the List
void appendNode(int value)
{
Node *n, *curr;
// Allocate a new node & store data
n = new Node();
n->data = value;
n->next = NULL;
// If there are no nodes in the list
// make n the first node
if (head==NULL)
head =n;

else // Otherwise, insert newNode at end



// Initialize curr to head of list
curr = head;

// Find the last node in the list
while (curr->next!= NULL)

{

curr = curr->next;

// Insert newNode as the last node

curr->next = n;

// displaying the list from the beginning
void displayList(void)
{

Node *curr;

curr = head;

while (curr!=NULL)

{
cout << curr->data << endl;

curr = curr->next;



// main function

int main()

{
appendNode(2);
appendNode(14);
appendNode(26);
displayList();

return O;



Example 5: Insertion at the top of the list.
#include <iostream>
using namespace std;
//Declaration to create a node
struct Node
{
int data;
Node *next;
I
// define the head pointer and make it points to null
Node *head = NULL;
// Adding or Appending a Node to the List
void InsertNode(int value)
{
Node *n, *curr;
// Allocate a new node & store data
n = new Node();
n->data = value;
n->next = NULL;
// If there are no nodes in the list
// make n the first node
if (head==NULL)
head =n;

else // Otherwise, insert newNode at end



// Initialize curr to head of list
curr = head;
// Insert n as the first node
head =n;
// connect the first node to the rest of the nodes

head->next = curr;

// displaying the list from the beginning
void displayList(void)
{

Node *curr;

curr = head;

while (curr!=NULL)

{
cout << curr->data << endl;

curr = curr->next;

// main function



int main()

{
InsertNode(2);
InsertNode(14);
InsertNode(26);
displayList();

return O;



Example 6: Insertion at the middle of the list

#include <iostream>
using namespace std;
//Declaration to create a node
struct Node
{
int data;
Node *next;
I

// define the head pointer and make it points to null
Node *head = NULL;
// Adding or Appending a Node to the List
void InsertNode(int value)
{

Node *n, *curr, *previous=NULL;

// Allocate a new node & store data

n = new Node();

n->data = value;

n->next = NULL;

// If there are no nodes in the list

// make n the first node

if (head==NULL)

head =n;



else // Otherwise, insert n at end
{
curr = head;
// Skip all nodes whose value member is less than value.
while (curr = NULL && curr->data < value)
{
previous = curr;

curr = curr->next;

// If nis to be the 1st in the list, insert it before all other nodes
if (previous == NULL)
{
head =n;

n->next = curr;

else

previous->next = n;

n->next = curr;



// displaying the list from the beginning
void displayList(void)
{

Node *curr;

curr = head;

while (curr!=NULL)

{
cout << curr->data << endl;

curr = curr->next;

// main function

int main()

{
InsertNode(2);
InsertNode(14);
InsertNode(26);



InsertNode(30);
InsertNode(18);
InsertNode(1);
displayList();

return O;



Example 7: Delete a node with a specific value from the list
#include <iostream>
using namespace std;
//Declaration to create a node
struct Node
{
int data;
Node *next;
I
// define the head pointer and make it points to null
Node *head = NULL;
// Adding or Appending a Node to the List
void InsertNode(int value)
{
Node *n, *curr, *previous=NULL;
// Allocate a new node & store data
n = new Node();
n->data = value;
n->next = NULL;
// If there are no nodes in the list
// make n the first node
if (head==NULL)
head =n;

else // Otherwise, insert n at end



curr = head;
// Skip all nodes whose value member is less than value.
while (curr = NULL && curr->data < value)
{
previous = curr;

curr = curr->next;

// If nis to be the 1st in the list, insert it before all other nodes
if (previous == NULL)
{
head =n;

n->next = curr;

else

previous->next = n;

n->next = curr;



// displaying the list from the beginning
void displayList(void)
{

Node *curr;

curr = head;

while (curr!=NULL)

{
cout << curr->data << endl;

curr = curr->next;

void DeleteNode(int value)
{
Node *curr, *previous = NULL;
// If the list is empty, do nothing.
if ('head)
return;

// Determine if the first node is the one.



if (head->data == value)
{
curr = head->next;
delete head;

head = curr;

else

// Initialize nodePtr to head of list
curr = head;
// Skip all nodes whose value member is
// not equal to num.
while (curr = NULL && curr->data != value)
{

previous = curr;

curr = curr->next;
}
// Link the previous node to the node after
// nodePtr, then delete nodePtr.
previous->next = curr->next;

delete curr;



// main function
int main()
{
InsertNode(2);
InsertNode(14);
InsertNode(26);
InsertNode(30);
InsertNode(18);
InsertNode(1);
cout<<"the list after insertion is:\n";

displayList();
DeleteNode(18);
cout<<"the list after deleting 18 is:\n";

displayList();

return O;



Example 8: Delete the first node from the list
#include <iostream>
using namespace std;
//Declaration to create a node
struct Node
{
int data;
Node *next;
I
// define the head pointer and make it points to null
Node *head = NULL;
// Adding or Appending a Node to the List
void InsertNode(int value)
{
Node *n, *curr, *previous=NULL;
// Allocate a new node & store data
n = new Node();
n->data = value;
n->next = NULL;
// If there are no nodes in the list
// make n the first node
if (head==NULL)
head =n;

else // Otherwise, insert n at end



curr = head;
// Skip all nodes whose value member is less than value.
while (curr = NULL && curr->data < value)
{
previous = curr;

curr = curr->next;

// If nis to be the 1st in the list, insert it before all other nodes
if (previous == NULL)
{
head =n;

n->next = curr;

else

previous->next = n;

n->next = curr;



// displaying the list from the beginning
void displayList(void)
{

Node *curr;

curr = head;

while (curr!=NULL)

{
cout << curr->data << endl;

curr = curr->next;

void DeleteFirstNode()
{
Node *curr;
// If the list is empty, do nothing.
if ('head)
return;

else



curr = head->next;
delete head;

head = curr;

}

// main function
int main()
{
InsertNode(2);
InsertNode(14);
InsertNode(26);
InsertNode(30);
InsertNode(18);
InsertNode(1);
cout<<"the list after insertion is:\n";
displayList();
DeleteFirstNode();
cout<<"the list after deleting the first node is:\n";

displayList();

return O;



Example 9: Delete the last node from the list
#include <iostream>
using namespace std;
//Declaration to create a node
struct Node
{
int data;
Node *next;
I
// define the head pointer and make it points to null
Node *head = NULL;
// Adding or Appending a Node to the List
void InsertNode(int value)
{
Node *n, *curr, *previous=NULL;
// Allocate a new node & store data
n = new Node();
n->data = value;
n->next = NULL;
// If there are no nodes in the list
// make n the first node
if (head==NULL)
head =n;

else // Otherwise, insert n at end



curr = head;
// Skip all nodes whose value member is less than value.
while (curr = NULL && curr->data < value)
{
previous = curr;

curr = curr->next;

// If nis to be the 1st in the list, insert it before all other nodes
if (previous == NULL)
{
head =n;

n->next = curr;

else

previous->next = n;

n->next = curr;



// displaying the list from the beginning
void displayList(void)
{

Node *curr;

curr = head;

while (curr!=NULL)

{
cout << curr->data << endl;

curr = curr->next;

void DeletelLastNode()
{
Node *curr, *previous;
// If the list is empty, do nothing.
if ('head)
return;

else



curr = head;
while (curr->next = NULL)
{
previous = curr;

curr = curr->next;

}

delete curr;

previous->next = NULL;

// main function
int main()
{
InsertNode(2);
InsertNode(14);
InsertNode(26);
InsertNode(30);
InsertNode(18);
InsertNode(1);
cout<<"the list after insertion is:\n";

displayList();



DeletelastNode();
cout<<"the list after deleting the last node is:\n";

displayList();

return O;



